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Abstract

It is known that the elastic constants of composite materials can be identified by modal analysis and numerical methods.

This approach is nondestructive, since it consists of simple tests and does not require high computational effort. It can be

applied to isotropic, orthotropic, or anisotropic materials, making it a useful alternative for the characterization of

composite materials. However, when elastic constants are bending constants, the method requires numerical spatial

derivatives of experimental mode shapes. These derivatives are highly sensitive to noise. Previous works attempted to

overcome the problem by using special optical devices. In this study, the elastic constant is identified using mode shapes

obtained by standard laser vibrometers. To minimize errors, the mode shapes are first smoothed by regressive discrete

Fourier series, after which their spatial derivatives are computed using finite differences. Numerical simulations using the

finite element method and experimental results confirm the accuracy of the proposed method. The experimental examples

reported here consist of an isotropic steel plate and an orthotropic carbon–epoxy plate excited with an electromechanical

shaker. The forced response is measured at a large number of points, using a laser Doppler vibrometer. Both numerical

and experimental results were satisfactory.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials today are used in many engineering fields because they have particular properties and
characteristics that other commonly used materials lack. In other words, unlike other structural materials,
such as metals, ceramics or polymers, their properties are flexible and can be changed according to design
requirements. Thanks to the numerous possible component combinations and arrangements, designers and
engineers can meet the specific needs of a particular design. However, the anisotropic behavior of composite
materials makes their structural analysis more complex. Their anisotropy increases the number of independent
elastic properties, making it more difficult to identify and determine the values of these properties in
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.08.030

ing author. Tel.: +5519 3521 3187; fax: +5519 3289 3722.

esses: fabianchi@fem.unicamp.br (F.B. Batista), ederlima@fem.unicamp.br (E.L. Albuquerque), arruda@fem.unicamp.br

), milton@fem.unicamp.br (M. Dias Jr.).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.08.030
mailto:fabianchi@fem.unicamp.br
mailto:ederlima@fem.unicamp.br
mailto:arruda@fem.unicamp.br
mailto:arruda@fem.unicamp.br
mailto:milton@fem.unicamp.br


ARTICLE IN PRESS

Nomenclature

A, B matrices
Dij bending stiffness constants
h plate thickness
k, l, m, n integer indices
M, N data size, i.e., number of rows and

columns, respectively
R, C DFS period size, rows, and columns,

respectively
p frequency lines along the x direction
q frequency lines along the Z direction
S plate domain
t time
w transverse deflection function of the

plate

WM,WN Mth and Nth root of unity, respectively
WR, WC Rth and Cth root of unity, respectively
WR, WC matrices of elements WR

mk and WC
ln,

respectively
xmn discretized data
x(S) smoothed discretized data
x, y coordinates in the plane of the plate
Xkl two-dimensional Euler–Fourier coeffi-

cients
e error matrix
x, Z orthogonal directions in the two-di-

mensional domain
r density of the plate material
F transverse deflection amplitude func-

tion of the plate
o natural frequency
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experimental tests. The elastic properties of composite materials can be characterized through dynamic or
static tests, which are well known and have long been in use. However, despite the simplicity of static tests,
they have disadvantages, e.g., the fact that they are destructive and require a number of samples with fiber
orientations specified by standards [1]. The fiber orientation of samples seldom coincides with the fiber
orientation specified in a design. Furthermore, some variables are difficult to control during tests and can
contribute to scatter experimental results, e.g., nonuniform stress fields near the ends of a sample due to
clamped boundary conditions. These aspects render static tests less attractive for composites. An alternative
approach for determining elastic constants is to combine modal analysis and numerical methods. This type of
approach allows for the identification of elastic constants using only one sample or even the real composite
material. These elastic constants represent global values and therefore offer the advantage of being little
influenced by local imperfections. In this type of test, samples are usually thin plates that reflect Kirchhoff’s
hypotheses, cylindrical shells, or beams. The modal analysis is required to supply the input data for the
numerical methods that compute the elastic constants. Generally, the input data of numerical methods are
natural frequencies and/or mode shapes. For numerical reasons, first modes associated to lower frequencies
are preferred. Many authors have proposed calculating elastic constants by iterative procedures using the
Rayleigh–Ritz method [2–6] and finite elements [7–12]. In these works, an objective function is created and
minimized. The objective function is a function of the natural frequencies obtained numerically and
experimentally. The main disadvantages of these iterative procedures are due to the dependency on the
optimization method. An initial guess for elastic constants should be given and there is always the risk of
stopping in a local minimum.

Grédiac and Paris [13] proposed an alternative approach that directly identifies the elastic parameters
without using an iterative procedure. In this case, vibration amplitudes and frequencies are input data to solve
a linear system based on the equation that governs the transversal vibrations of anisotropic thin plates under
free response. However, because this method requires the computation of spatial derivatives of mode shapes,
its results are strongly dependent on the noise level of the experimental mode shapes. Hence, it is very difficult
to use this method with experimental data obtained from standard modal analysis procedures. The
experimental noise level must be reduced in order to overcome difficulties in the numerical computation of
spatial derivatives of the mode shapes. Grédiac et al. [14] suggested the use of special optical devices in modal
tests. However, these devices are not common in most vibration labs.

In this paper, the regressive discrete Fourier series (RDFS) is applied to smooth mode shapes from both
numerical and experimental tests, and consequently, to reduce noise. Elastic constants are then computed
following the procedure proposed by Grédiac and Paris [13]. Second-order spatial partial derivatives of mode
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shapes are computed by finite differences from the smoothed shapes. Numerical and experimental tests were
carried out to assess the accuracy of the proposed method. It is shown that the method can compute the elastic
constant accurately, even when the input data contains noise.

2. Numerical and theoretical procedures for the identification of elastic constants

2.1. Review of the method to compute bending stiffness

The method proposed by Grédiac and Paris [13] consists of obtaining elastic constants based on the partial
differential equation that governs the transversal vibration of an anisotropic thin plate (Kirchhoff’s plate).
This equation is given by

D11
q4w

qx4
þ 4D16

q4w
qx3qy

þ 2ðD12 þ 2D66Þ
q4w

qx2qy2
þ 4D26

q4w
qxqy3

þD22
q4w

qy4
¼ �rh

q2w

qt2
, (1)

where Dij are thin plate bending stiffness constants, r is the mass density of the material, h is the plate
thickness, x and y are coordinates of the plate, t is time, and w(x,y,t) is the deflection function that represents
the transversal displacement of a point of the plate at an instant t. Eq. (1) does not state the global equilibrium
of the plate since the excitation force and damping are not considered. However, for many composite
materials as, for example, aeronautic carbon–epoxy tested in this work, the damping is low enough to
disregard its contribution in the formulation. Besides, if the input data refer to resonant response of the plate,
the work provided by the excitation is balanced by internal dissipation of the plate. A detailed discussion
about when excitation and damping should be considered in Eq. (1) can be found in Giraudeau and
Pierron [15].

After some mathematical manipulations of Eq. (1), Grédiac and Paris [13] obtained a linear system in which
the unknown variables are the elastic constants. Briefly, the sequence of operations is as follows: (a) multiply
both sides of Eq. (1) by an arbitrary weighting function; (b) integrate twice by parts along the plate domain;
(c) eliminate the boundary integrals by applying the free–free boundary conditions; (d) decompose the
displacement function w(x,y,t) as a product of the deflection amplitude F(x,y) and sin(ot), where o is the
natural frequency of a particular mode shape of the plate; and (e) choose appropriate weighting functions
and mode shapes to build the matrix of the linear system. At this point, as Grédiac and Paris [13] explain, the
choice of mode shapes associated with the weighting function is extremely important for the accuracy of this
method. Three particular modes are strongly dependent on the required coefficients Dij: a twisting mode that
strongly depends on terms D66, D16, and D26; a bending mode along direction 1 that strongly depends on terms
D11, D12, and D16, and a bending mode along direction 2 that strongly depends on D22, D12, and D26. These
modes present smooth curvatures and are generally among the first modes, with lower frequencies. If these
modes are not found, it is recommended to use modes that have shapes similar to theirs. Furthermore, they
are modes that can be approximated by quadratic functions with constant curvatures: x2, y2, and xy. For this
reason, these quadratic functions were the weighting functions chosen by Grédiac and Paris [13]. Thus, using
these previous quadratic-weighting functions, the following simplified system of equations can be obtained:

� � � � � � � � � � � � � � � � � �

K ðjÞxx 0 K ðjÞyy 0 K ðjÞxy 0

0 K ðjÞyy K ðjÞxx 0 0 K ðjÞxy

0 0 0 K ðjÞxy K ðjÞxx K ðjÞyy

� � � � � � � � � � � � � � � � � �

K ðkÞxx 0 K ðkÞyy 0 K ðkÞxy 0

0 K ðkÞyy K ðkÞxx 0 0 K ðkÞxy

0 0 0 K ðkÞxy K ðkÞxx K ðkÞyy

� � � � � � � � � � � � � � � � � �

2
666666666666666664

3
777777777777777775

D11

D22

D12

D66

D16

D26

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼ �
rh

2

� � �

o2
j

R
S
FðjÞx2 dS

o2
j

R
S
FðjÞy2 dS

o2
j

R
S
FðjÞxy dS

� � �

o2
k

R
S
FðkÞx2 dS

o2
k

R
S
FðkÞy2 dS

o2
k

R
S
FðkÞxy dS

� � �

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

, (2)



ARTICLE IN PRESS
F.B. Batista et al. / Journal of Sound and Vibration 320 (2009) 793–807796
where indices j and k each represent a specific mode shape and S is the plate domain. Elements of the matrix of
Eq. (2) are given by

Kxx ¼

Z
S

q2Fðx; yÞ
qx2

dS; Kyy ¼

Z
S

q2Fðx; yÞ
qy2

dS; Kxy ¼

Z
S

q2Fðx; yÞ
qxqy

dS. (3)

Eq. (2) can be represented in matrix form as

AD ¼ B, (4)

where, considering L as the number of modes used in the linear system of equations, A is a 3L� 6 matrix, D is
a 6� 1 matrix, and B is a 3L� 1 matrix. As can be seen, Eq. (4) is an overdetermined system of equations. The
solution can be found by least squares:

D ¼ ðATAÞ�1ðATBÞ. (5)

Because finite differences are quite sensitive to noise, this method is not suitable for computing derivatives
of experimental mode shapes that contain noise. This work proposes the use of the RDFS to smooth the data
before computing the numerical derivatives by finite differences.

2.2. The regressive discrete Fourier series

It is known that signal derivatives are extremely sensitive to noise. This can be explained by the fact that the
amplitude of the derivative of a sine wave is proportional to its frequency. Thus, the noise derivative becomes
predominant for a low frequency signal, even at very low noise levels, due to the high frequency content of the
noise. That is why finite difference schemes are not suitable for differentiating noise-contaminated signals [6].
Smoothing techniques can be used in experimental modal analysis applications to smooth spatially dense
measured operating shapes. In this work is used a smoothing technique proposed by Arruda [16] called RDFS.
It uses least squares to estimate the coefficients of a two-dimensional discrete Fourier series with arbitrary
periods and arbitrary frequency resolutions. This formulation can be used for rectangular or arbitrary-shaped
domains, as shown by Arruda [16]. Unlike the discrete Fourier transform, one uses approximation instead of
interpolation, which decreases the effect of periodization, i.e., the leakage. Unlike the discrete Fourier series,
the original length of the data is not assumed to be equal to the period, and the number of line frequencies is
not assumed to be equal to the size of the data. The RDFS is expressed as

xmnðx; ZÞ ¼
Xp

k¼�p

Xq

l¼�q

X klW
mk
R W ln

C þ �mn; m ¼ 0; . . . ;M � 1; n ¼ 0; . . . ;N � 1, (6)

where x and Z are orthogonal directions in the two-dimensional domain, xmn is the discretized data with
constant resolution Dx and DZ, k, l, m, and n are integer indices, M and N are the data size, i.e., number of
rows and columns, respectively, R and C are the period size of the discrete Fourier series, rows and columns,
respectively, WR ¼ exp(i2p/R) and WC ¼ exp(i2p/C) are the Rth and Cth roots of unity, respectively, Xkl are
the two-dimensional Euler–Fourier coefficients, and emn is the element of the error matrix e. The length of the
data in the x direction is MDx, but the period of the discrete Fourier series is R4M. The number of frequency
lines kept when filtering is p5M. In the same way, the length of the data in the Z direction is NDZ, but the
period of the discrete Fourier series is C4N. The number of frequency lines kept when filtering is q5N. Thus,
an approximation of xmn is made and the Euler–Fourier coefficients cannot be calculated by the discrete
Fourier transform. Rewriting Eq. (6) in a matrix form, one has

x ¼WRXWC þ e, (7)

where e is error vector in arbitrary domain RDFS.
The least-square solution is given by

X ¼ ðWH
R WRÞ

�1WH
R xWH

C ðWCW
H
C Þ
�1. (8)

The superscript H denotes the complex conjugate transpose of a matrix. It should be noted that matrices to
be inverted have a very small size, i.e. (2p+1� 2p+1) and (2q+1� 2q+1), respectively. The smoothed shape
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is obtained from

xðSÞ ¼WRXWC . (9)

2.3. The optimized RDFS

It is possible to write the period of the discrete Fourier series as R ¼ KxM along x direction and C ¼ KZN

along Z direction. In practice, ratios Kx and KZ are usually unknown and they should be estimated as well
together with the residues leading to a nonlinear least-squares problem. An approach based on an RDFS and
called optimized regressive discrete Fourier series (ORDFS) was introduced by Vanherzeele [17]. It allows
both ratios Kx and KZ to be estimates using a more robust and computationally faster linear least-squares
approach. Using the built-in function lsqnonlin of the Signal Processing Toolbox in Matlab, it is possible to
estimate these unknown ratios together with the unknown coefficients X of Eq. (7) using a classical
Gauss–Newton iterative procedure. For this optimization problem, the objective function represents the
residue computed by nodal difference between the original signal (that in this work is the original mode shape
in a specific frequency), having noise, and its respective filtered signal (smoothed or virtual mode shape in the
same frequency). Ratios Kx and KZ are changed in each iterative minimization step and will be the global
parameters for this step. After iterative process, the optimum values for these optimization variables Kx and
KZ are used in the calculation of x(S), or more specifically, for this work, in the calculation of the smoothed
mode shape.
Mode shapes
(with noise)

modal analysis 

RDFS (ORDFS)
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Fig. 1. Numerical identification process of the elastic properties.

comparison

RDFS (ORDFS)
(Matlab)

ANSYS

modal analysis

method of
identification

(Matlab)

Experimental:
Plates with unkown

elastic properties

Natural frequencies

Mode shapes
(with noise)

Smoothed
mode shapes

Elastic
properties

Natural frequencies

Fig. 2. Experimental identification process of the elastic properties.



ARTICLE IN PRESS

Table 1

Properties and dimensions of the numerical plate used to assess the method

Characteristic of the anisotropic plate

D11 (Nmm) 64,363.9

D22 (Nmm) 24,155.8

D12 (Nmm) 8875.1

D66 (Nmm) 10,032.7

D16 (Nmm) 6019.6

D26 (Nmm) 6019.6

Width (mm) 350

Length (mm) 450

Thickness of the laminate (mm) 2.1

Density (kg/mm3) 1.510
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Fig. 3. Numerical modes obtained from ANSYS: (a) mode shape 1, (b) mode shape 2 and (c) mode shape 3.
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3. Complete identification process

In this section, numerical and experimental analyses were carried out in order to verify the accuracy of the
RDFS when used as smoothing method of the mode shape. The numerical mode shapes with their
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corresponding natural frequencies were obtained by commercial finite element program (ANSYS 10.0), and
noise was randomly generated on these modes (more details in Section 4). The experimental modal analysis
was carried out using a laser Doppler vibrometer, as can be seen in Section 5. Two plates were tested: an
isotropic steel plate and an orthotropic carbon/epoxy plate. Figs. 1 and 2 show, respectively, the numerical
and experimental identification processes of elastic properties.
4. Numerical analysis

4.1. Presentation of the validation process

Initially, a hypothetical anisotropic plate was used to the numerical modal analysis. Its characteristics can
be seen in Table 1. It was used a Pentium IV processor with 2.4MHz of clock and 1GBytes of RAM. The
natural frequencies and mode shapes were computed using a mesh of 150 elements with eight nodes per
element (ANSYS element SHELL93). The plate was considered under free-edge boundary conditions. In
order to simulate noise, random numbers were added to the amplitude of the mode shapes. These random
numbers have a maximum amplitude of 5%, 10%, or 15% of the maximum magnitude of the deflection. First
and second derivatives were computed by finite differences with and without noise, using or not the smoothing
process.
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Fig. 4. Numerical modes with noise p15%: (a) mode shape 1, (b) mode shape 2 and (c) mode shape 3.
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4.2. Results and discussion

Fig. 3 shows three numerical modes obtained by the finite element method that were used to verify the
method. Fig. 4 shows the same modes with the addition of a noise with maximum amplitude p15% of the
maximum amplitude of the mode deflection. Fig. 5 shows these same modes after smoothing.
Table 2

Errors obtained using the finite differences method

Constants Error (%)

Without noise Noise p5% Noise p10% Noise p15%

D11 0.02 1.61 2.44 2.78

D22 0.04 5.77 13.274 21.46

D12 0.02 16.84 29.48 38.34

D66 1.22 4.55 11.05 17.59

D16 0.63 3.42 9.13 16.04

D26 0.64 11.72 19.59 23.31
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Fig. 5. Numerical modes smoothed by the RDFS: (a) mode shape 1, (b) mode shape 2 and (c) mode shape 3.
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Table 2 shows values of errors obtained for the numerical anisotropic plate in the absence of noise and in
the presence of different levels of noise. The derivatives were computed by directly applying the finite
difference method. As can be seen, this method is not suitable to be used in the presence of noise, because the
values of elastic constants present significant errors. However, it is a very accurate method when the signal is
devoid of noise. This can be explained by the fact that the computation of derivatives is extremely sensitive to
noise. Therefore, if finite differences are used on a signal containing noise, the signal should be subjected to a
filtering process before using this method. The RDFS can be an alternative option for filtering a noisy signal.

Table 3 shows values of the errors obtained for the numerical anisotropic plate in the absence of noise but
using RDFS. For analogy to Kx and KZ (in Section 2.3), variables Kx and Ky represent the ratios R/M and C/N
along directions x and y, respectively. The subscripts 1, 2, and 3 in the variables p, q, Kx, and Ky refer to the
three used mode shapes. For this case, very high values of parameters p and q are used. As can be seen, in the
Table 5

Engineering constants from the used method and from the literature

Engineering constants Ex (GPa) Ey (GPa) Gxy (GPa) nxy

Medium values from the literature (r ¼ 7800kg/m3) 210 210 80.8 0.3

Obtained values by the method (r ¼ 7870kg/m3) 215.67 209.08 83.08 0.3

Table 4

Errors obtained after smoothing by RDFS—numerical anisotropic plate with noise

Optimum parameters: p1 ¼ 2, p2 ¼ 1, p3 ¼ 1, q1 ¼ 1, q2 ¼ 3, q3 ¼ 4

Noise p5% Noise p10% Noise p15%

Adjusted values: Kx1 ¼ 10.38, Kx2 ¼ 1.85,

Kx3 ¼ 1.62, Ky1 ¼ 3.85, Ky2 ¼ 3.14,

Ky3 ¼ 1.53

Adjusted values: Kx1 ¼ 15.37, Kx2 ¼ 1.89,

Kx3 ¼ 1.60, Ky1 ¼ 3.67, Ky2 ¼ 3.16,

Ky3 ¼ 1.38

Adjusted values: Kx1 ¼ 15.36, Kx2 ¼ 1.94,

Kx3 ¼ 1.57, Ky1 ¼ 3.51, Ky2 ¼ 3.10,

Ky3 ¼ 1.31

Elapsed time: 25.475 s Elapsed time: 26.436 s Elapsed time: 25.532 s

Constants Error (%) Constants Error (%) Constants Error (%)

D11 0.43 D11 0.31 D11 1.28

D22 1.26 D22 0.47 D22 0.38

D12 1.53 D12 4.36 D12 11.04

D66 1.37 D66 1.51 D66 1.61

D16 1.12 D16 3.10 D16 5.29

D26 0.89 D26 1.40 D26 1.79

Table 3

Errors obtained after smoothing by RDFS—numerical anisotropic plate without noise

Optimum parameters: p1 ¼ 8, p2 ¼ 8, p3 ¼ 8, q1 ¼ 8, q2 ¼ 8, q3 ¼ 8

Adjusted values after smoothing: Kx1 ¼ 2, Kx2 ¼ 2, Kx3 ¼ 2, Ky1 ¼ 2, Ky2 ¼ 2, Ky3 ¼ 2

Constants Error (%)

Without noise

D11 0.25

D22 0.19

D12 0.83

D66 1.25

D16 0.31

D26 0.54
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absence of noise, the results were as good as the results obtained without the application of the smoothing
method.

Table 4 shows results obtained when noise is introduced. It can be noted that, at the same noise level, errors
resulting from the direct application of finite differences are much higher than errors after pre-filtering, and the
Table 7

Comparison of experimental and numerical frequencies for the orthotropic carbon–epoxy plate

Optimum parameters: p1 ¼ 2, p2 ¼ 1, p3 ¼ 2, q1 ¼ 2, q2 ¼ 4, q3 ¼ 1

Adjusted values after smoothing: Kx1 ¼ 3.90, Kx2 ¼ 1.88, Kx3 ¼ 1.91, Ky1 ¼ 2.56, Ky2 ¼ 2.08, Ky3 ¼ 1.43

Experimental frequencies Numerical frequencies (ANSYS) Differences (%)

41.32 40.26 2.57

99.59 95.47 4.13

126.53 125.70 0.65

166.76 170.88 2.47

183.97 188.56 2.49

256.21 257.00 0.30

Table 6

Comparison between experimental and numerical frequencies for the isotropic steel plate

Optimum parameters: p1 ¼ 1, p2 ¼ 4, p3 ¼ 5, q1 ¼ 1, q2 ¼ 4, q3 ¼ 4

Adjusted values after smoothing: Kx1 ¼ 3.74, Kx2 ¼ 1.91, Kx3 ¼ 2.00, Ky1 ¼ 2.89, Ky2 ¼ 2.38, Ky3 ¼ 2.00

Experimental frequencies Numerical frequencies (ANSYS) Differences (%)

43.09 45.27 5.07

55.95 55.07 1.58

96.61 96.72 0.11

103.97 107.67 3.56

124.61 129.18 3.67

160.37 159.79 0.36
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Fig. 6. Experimental setup of the modal testing.
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elapsed time by the whole identification process is very low, independently of the noise level. For each value of
variables p and q, the ratios Kx and Ky of the RDFS were estimated from an optimization process, as proposed
by Vanherzeele [17]. These ratios, which represent the design variables of the minimization problem, are highly
dependent on variables p and q. When p and q increase, the residual usually decreases. However, if the original
signal contains noise, it is possible that noise is not being filtered. On the other hand, if p and q decrease,
the residual value increases. Depending on the curvature of the original mode, part of data of the real signal
(real curvature of the mode) is filtered. In general, p and q depend on the shape of the signal. If the signal is
smooth and has few wave peaks, p and q are small. On the other hand, if the signal has many wave peaks,
p and q are larger. In this work, the finite element method was used to ascertain the coherence of the computed
elastic properties. Parameters p and q were changed and the elastic constants computed. These constants are
input data to calculate the numerical frequencies. The parameters are changed until the difference between
experimental and numerical natural frequencies is minimal for the same mode shapes.

Another RDFS variable that can contribute to the accuracy of the computed elastic constants is the number
of points on the mesh. Errors generally decrease as mesh discretization increases. Due to this problem, it is
advisable to either increase the number of measured points in the modal analysis or create points by
interpolation of the original signal before the smoothing process. This procedure is possible because this
method is not very sensitive to noise, but its accuracy depends on the number spectral lines to approximate the
coefficients of the Fourier series. Increasing the number of points on the mesh also contributes positively to the
computation of the second-order derivatives by the finite difference method.
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Fig. 7. Experimental modes of the steel plate: (a) mode shape 1, (b) mode shape 2 and (c) mode shape 3.
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5. Experimental analysis

5.1. Presentation of experimental setup and procedures

Next, the proposed method was used with data obtained from the experimental modal analysis of two
plates. One was a 450� 350� 2.1mm isotropic steel plate with a total measured mass of 2.603 kg. The other
was a 444� 346� 3.2mm orthotropic carbon/epoxy plate with woven fibers with a total measured mass of
0.7594 kg. The mass densities of the plates were obtained by dividing the measured mass by the volume. For
the steel plate, it was found a value that is slightly higher than the medium value found in the literature, as can
be seen in Table 5. This was due to variations in the thickness along the domain of the plate. As the proposed
method is sensitive to the variation of the thickness, computing the density from the measured mass instead of
using values from literature can be a way to compensate for the variations of the plate thickness.

The plates were suspended by nylon strings to simulate free-edge boundary conditions, as illustrated in
Fig. 6. The plates were excited at a unique point through a stinger and a force transducer by an
electromechanical shaker fed with white noise. The frequency range of the input signal was chosen such that it
excited the three required modes. Dynamic responses (transverse velocities) were measured at 176 equally
spaced points on the plates by a laser Doppler vibrometer. Frequency response functions (FRFs)
were obtained using the commercial software LMS/CADA-Xs. The mode shapes were identified by ERA
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(Eigen System Realization Algorithm) [18] using impulse response functions (in the time domain) obtained
from the measured FRFs by the inverse Fourier transform.
5.2. Results and discussion

Table 5 shows the values of the engineering constants of the steel calculated from the Dij and the one from
the literature, where Ex and Ey are the longitudinal modulus of elasticity associated with the x and y directions
of the plate, respectively, Gxy is shear modulus associated with the xy plate plane, and nxy is the Poisson’s ratio.
Tables 6 and 7 contain values of errors of numerical and experimental natural frequencies for the isotropic and
orthotropic plates, respectively, using the RDFS. As can be seen, the results were satisfactory.

Figs. 7 and 9 show three modes (twisting and bending along the x and y directions) obtained by the
experimental test on the isotropic steel plate and the orthotropic carbon–epoxy plate, respectively. Figs. 8 and
10 show the same modes after smoothing (Figs. 7–10).

Fig. 11(a) shows the second-order spatial derivative with respect to y of the twisting mode computed directly
by finite differences, while Fig. 11(b) shows the same second derivative of the twisting mode obtained by finite
differences after the smoothing process. Note that the second derivative computed directly by finite differences
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is completely meaningless, because the noise derivative predominates over the signal derivative. The reduction
of the noise obtained by RDFS allows the second derivative to be properly computed.

6. Conclusions

This paper presented an alternative approach to compute elastic constants directly from experimental
modal analysis. No special devices were used to obtain mode shapes and a certain level of noise was allowed in
the experimental data. The use of the RDFS to smooth mode shapes before computation of the second-order
spatial derivatives by finite differences improved the accuracy in the identification of elastic constants. This
smoothing method is very fast and proved suitable for smoothing noise-contaminated two-dimensional
functions.
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